
Economic Systems Research, Vol. 9, No. 2, 1997 

Assigning Patents to Industries: Tests of the Yale 
Technology Concordance 

SAMUEL KORTUM & JONATHAN PUTNAM 

161 

ABSTRACT We describe a method to predict patent counts disaggregated by industry, 
using available data on patenting by technology field. This method-the Yale Technology 
Concordance (YTC)-exploits a data set of patents that have been individually assigned 
by the Canadian Patent Office to both an industry and a technology field. The procedure 
for predicting patents by industry is developed as a statistical model so that the standard 
errors of the predictions can be estimated. The YTC is tested on several subsets of 
Canadian patents by comparing out-of-sample predictions with industry assignments 
made by the Canadian Patent Office. We find that the predictions of patents by industry 
are quite accurate for the subset of patents from US inventors. The prediction errors are 
much greater for the subset of patents granted or published after 1989. This suggests that 
the relationship between the technology fields and industries has shifted in a way that the 
procedure does not capture. Nonetheless, predictions from the YTC do appear to give a 
reasonably accurate picture of the pattern of patenting by industry. 

KEYWORDS: Patents, Yale Technology Concordance, industry classification, Canada 

1. Introduction 

Patents have proved to be useful indicators of research activity and technological 
change in a number of economic studies (Griliches, 1990). However, patent data 
have not been available at the industry level-a unit of analysis at which data on 
research expenditure and productivity growth are collected. As a consequence, 
certain empirical issues, such as the link between patenting and productivity 
growth, have received little attention. 1 In this paper, we present a method of 
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predicting patents by industry, using widely available information on the distri­
bution of patenting across technology fields. 

Our method of predicting patents by industry relies on a unique data set from 
the Canadian Intellectual Property Office (CIPO). Similarly to most patent offices, 
the CIPO assigns a technology field from the International Patent Classification 
(IPC) system to each patent it issues. 2 However, unlike other patent offices, the 
CIPO also assigns an industry of manufacture (IOM) and a sector of use (SOU) 
to most patents. 3 For a product patent, the IOM is the industry that manufactures 
the product, and the SOU is the industry (or sector) that uses it; however, for a 
process patent, an IOM is only assigned if the process includes some apparatus 
(Ellis, 1981). Both concepts appear to be useful, so we provide a means of 
predicting patents by either IOM or SOU. 4 We examine the industry and technol­
ogy assignments of over 250 000 patents issued in Canada from 1983 through 
1993. 5 

The key assumption that underlies our strategy is that the probability of a 
patent being assigned to a given industry is a function of the technology field of the 
patent and nothing else. In particular, we assume that the probability of industry 
assignment conditional on technology assignment does not depend on the country 
where the patent originates, or the date when it is issued. We estimate these 
conditional probabilities from the Canadian data and then apply them to patents 
in other countries or time periods where we know only the technology field of the 
patents. 

Using the Canadian data to assign patents to industries in other countries was 
originally pursued by Evenson at Yale; hence, the name Yale Technology Con­
cordance (YTC) (Evenson et al., 1991). The term 'concordance', however, is 
somewhat misleading, because it implies a deterministic assignment of each 

I 

technology field to a specific industry. We develop the YTC in a probabilistic 
framework. The technology field of a patent determines the probability distri­
bution over possible industries to which the patent might be associated. An 
advantage of this approach is that approximate standard errors of the predictions 
can be calculated. 

A simple example will illustrate our approach. Suppose that there are only three 
technology fields (a, b and c) and two industries (1 and 2). The following matrix 
gives the probabilities of a patent being associated with a given industry con­
ditional on the technology field of the patent: 

technology\industry 

a 
b 
C 

1 2 

0.5 0.5 
0.3 0.7 
1.0 0.0 

A patent from technology a is equally likely to be associated with industry 1 or 
2, while a patent from technology b is more than twice as likely to be associated 
with industry 2. A patent from technology c • is always associated with 
industry 1. Assume that this set of conditional probabilities is known (in practice, 
it will be estimated from the Canadian data). Suppose that, in Japan, we observe 
60 patents in technology a, 100 patents in technology b and 10 patents in 
technology c. The prediction of patents by industry in Japan would be 
0.5 X 60 + 0.3 X 100 + 1.0 X 10 = 70 in industry 1, and 0.5 X 60 + 0.7 X 100 = 100 
in industry 2. In the following, we show that the standard error of the prediction 
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is 6. Taking account of uncertainty in the estimates of the conditional probabilities 
themselves would lead to a larger standard error. 

We are not the first researchers to use patents by class to infer patents by 
industry. Schmookler (1966) assigned patents by US patent class (USPC) to 
selected industries of use. 6 His classification rule assigned all the patents in a 
USPC class to an industry if he determined that at least two-thirds of the patents 
in the class were used by that industry. The Office of Technology Assessment and 
Forecast (OTAF), which is part of the US Patent and Trademark Office, also 
developed a concordance similar to that of Schmookler. 7 In cases where a USPC 
was related to several industries, the patents in that class were assigned in equal 
fraction to each of those industries. 

In principle, the YTC has several advantages over the OTAF concordance. 
First, the relation between technology fields and industries is inferred from the 
assignment to a technology field and an industry of over 250 000 patents. The 
individual industry assignments are made by trained personnel of the CIPO. There 
is no need to use judgement in determining the overall connection between 
technology fields and industries. Second, the YTC uses the IPC (an international 
standard for classifying patents by technology) rather than the USPC (which is 
only used in the US). Hence, the YTC can be applied to patent data from a wide 
set of countries. Third, we explicitly model the error that is inherent in predicting 
patents by industry. This allows us to quantify the degree of uncertainty attached 
to our prediction of patents by industry. 

Of course, these advantages are in principle, and not necessarily in practice. In 
this paper, we test the YTC to obtain some idea of how accurate it will be in 
practice. First, we pretend that, for patents granted in Canada to US inventors, we 
have only information on the technology field. We then use the YTC to predict 
patents by industry for this subset of Canadian patents, and we compare these 
predictions with actual industry assignments made by the CIPO. We perform a 
similar exercise for patents granted or published after 1989. The results indicate 
that the YTC gives a reasonably accurate picture of the pattern of patenting by 
industry. However, as a result of shifts over time in the relationship between 
technology fields and industries, our estimated standard errors appear to be much 
too small. 

In the next section, we develop the statistical model that underlies our 
procedure. The third section then tests the method on the Canadian data. The 
fourth section concludes. 

2. The Statistical Model 

We assume that every patent is associated with exactly one of j = I, ... , J 
industries and is assigned to exactly one of i= I, ... , I technology fields. 8 Let aij 

be the probability that a patent will be associated with industry j, given that it is 
in technology field i. We have 

aij = Pr[industry = j I technology field= i] 

The J-dimensional column vector of these conditional probabilities for a given 
technology field i is 

a;= (a;i, a;2, ... , a;1)' 
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These vectors, i = 1, ... , I, form the rows of an I by J matrix, i.e. 

A-(!;) 
The key assumption that underlies the YTC is that the matrix A does not vary with 
time or with the country that issues the patent. In particular, we want to estimate 
A using the Canadian data set, and then use it to predict patents by industry in 
other countries and over other time periods. 

2.1. Inference Conditional on A 

In this section, we treat the matrix A as if it were known. We assume that we are 
given data on patents by technology field, x = (xi, ... , x 1)'. These data will be 
used to predict the unknown random vector, giving the number of patents 
associated with each industry, i.e. Y =(Yi, ... , Y1)'. By construction, we have 
2.J=1 Yj=I.f=i x;. In the numerical example above, x=(60, 100, 10)'. 

Our goal is to derive expressions for the expectation of Y conditional on x 
(E[Yjx]) and for the variance of expectation errors (E[EE'], where E = Y- E[Ylx]). 

It is convenient to let Yij be the random number of patents in technology i and 
industry j. Then, Y; = (Y;1, ... , Y;1)' is the random vector of patents in technology 
i by industry and Y = I.f = 1 Y ;. 

If the matrix A of conditional probabilities is actually constant, then the 
random vector of patents by industry in technology i has a multinomial distri­
bution, 9 i.e. 

Y; ~ M(x;, a;) 

Thus, E[Y;jx;) = x;a;. Letting E; = Y; - E[Y;lx;], E[E;E,1 = x;[diag(a;) - a;a,1, where 
diag(a) refers to the diagonal matrix with elements of a on the diagonal. 

We can now calculate the expectation of patents by industry over all technology 
fields as 

I I 

E[Ylx] = L E[Y;lx;] = L x;a; = A'x 
i= I i= I 

Furthermore, by the independence of Y;, we have 
I 

E[EE'] = L x;[diag(a;) - a;a,1 = diag(A'x) -A' diag(x)A 
i= I 

Returning to the numerical example from the introduction, we have 

( 

0.5 0.5 ] 
A= 0.3 0.7 

1.0 0.0 

A'x = (70, 100)' and 

1 ( 36 - 36 ) 
E[ EE ] = - 36 36 

The square root of the diagonal elements yields the standard error of 6 mentioned 
in the introduction. Note that the two elements of Y are perfectly negatively 
correlated. An unexpectedly large number of patents associated with industry 1 
must come at the expense of industry 2. With more than two industries, there is 
still no error in the prediction of the sum of patents over all industries, because the 
sum is known to equal I.f = 1 x;. 
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2. 2. Estimating A 

To apply the concordance, we will estimate the matrix A from the Canadian data 
set. A superscript 0 will identify variables as being associated with the Canadian 
data. Thus, x? is the number of patents in the Canadian data set in technology field 
i and the random vector of how these patents distribute over industries is Y?. The 
maximum likelihood estimator (MLE) of the vector a; is a; = v? Ix?. The matrix A 
has its £th row given by a[. 

In what follows, it is convenient to denote E[Ylx] by the symbol 0. Because A 
is the MLE of A, and 0 = A'x, it follows that the MLE of 0 is 

Note that ~ is simply a weighted sum of independent multinomial random 
variables. Its mean is 0. Thus, letting 11 = ~- 0, the variance matrix of 11 is 

I 

E['Jl'Y)1] = L Xi~o [diag(ai) - a;a,1 
i= 1 X; 

We can now combine the two sources of uncertainty associated with predicting 
patents by industry. The first source arises because the technology field of a patent 
generally does not exactly determine the industry with which it will be associated. 
The second source arises because the probability of an industry assignment, 
conditional on the technology field of the patent, is not known with certainty, but 
must be inferred from the finite sample of Canadian assignments. Thus, we have 

v = ~+ e - 'll = A1x + u 

where u = E -11. We make the conservative assumption that E and 1l are indepen­
dent. 10 Thus, letting O = E[uu'], we have 

I 

n = L x;(l + ~c) [diag(a;) - a;a,1 
;~ I X; 

An estimate !! of O is obtained by replacing a,- in the above formula with an 
estimate of it, i.e. a;. 

Continuing with our numerical example, suppose the matrix A is an estimate, 
i.e. A, based on data from Canada. If patents by technology field in Canada are 
x0 = (30, 100, 20) 1 , then 

!!= ( 87 
-87 

-87 ) 
87 

The standard error in predicting patents by industry rises from 6 to over 9. 

3. Testing the Concordance on the Canadian Data 

In applying the YTC, we will use the Canadian data to estimate the conditional 
probabilities in the matrix A. However, the Canadian data also provide a means 
to test the underlying assumptions of our statistical model. To understand how this 
can be achieved requires a more complete description of the data set. 
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3.1. The Canadian Data Set 

The Canadian data set (referred to as PA TDA T) includes all inventions patented 
in Canada during 1978-93. We omit patents issued prior to 1983, because 
industry assignments in the earlier years are less reliable. 11 Essentially all the 
remaining patents (about 250 000) are assigned an IPC code, at the level known 
as an 'IPC group' .12 Almost 7000 distinct groups appear in the data set. 

Over 92% of the patents are assigned a four-digit CSIC for the primary SOU, 
and over 87% are assigned a primary IOM. 13 Less than 8% of patents are assigned 
more than one IOM, and about 20% are assigned to more than one SOU. In about 
half these instances of multiple-industry assignment, all four-digit industries are in 
the same two-digit industry. Because the multiple assignments are relatively 
infrequent, and are often made to the same broadly defined industry, we ignore all 
but the primary IOM and the primary SOU. 

We maintain two versions of the Canadian data set and construct two concor­
dances: one for SOU and one for IOM. Within each data set, we simply delete 
patents that are not assigned to an industry. 

The inventions patented in Canada come from residents of many countries. 
Only 7% come from Canadian inventors. About half are from US inventors. 

To test the YTC, we split the Canadian data along two dimensions. We split 
it over time, considering patents issued during 1983-89 against patents issued after 
1989. We also split it by country of inventor, considering patents issued to US 
inventors vs all other patents. For each split, we estimate the matrix A from the 
first subsample and then use it to predict patents by industry in the second 
subsample, based on patents by IPC in the second subsample. 14 

To apply this test, we need to determine the number of technology fields and 
the number of industries. For the analysis that follows, we consider technology 
fields at the level of IPC groups. 15 

We aggregate all four-digit CSIC into 27 industries, as listed in Table l. The 
20 manufacturing industries correspond closely to the industries for which the 
National Science Foundation (NSF) collects R&D expenditures. 16 The seven 
non-manufacturing industries are defined quite broadly, because they generally use 
few patents and almost never manufacture them. Although the Canadian data have 
more industry detail, using this detail increases the potential errors in applying the 
concordance. For example, a patent in a certain technology field may be quite 
likely to be used in the primary metals industry, but there may be little information 
in the technology field about whether it is used in the ferrous or non-ferrous metals 
subindustry. By considering fairly aggregate industries, we reduce the errors 
generated by the concordance. 

We calculate two summary statistics that give some feel for the relationship 
between technology fields and industries. These calculations are based on the SOU 
concept. The patents in a given technology field may all be assigned to one 
industry, or they may be assigned to several different industries. We find that it is 
most likely for patents to be in a technology field that maps into nine distinct 
industries. Thus, it appears that patents in a given technology field will often be 
dispersed over many industries. However, we find that 63% of patents are assigned 
to the industry that is the most likely industry, given the technology field of the 
patent. This statistic suggests that the technology field of the patent contains a lot 
of information about its SOU. 
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Table 1. Industry definitions 

Sector CSIC (1980) SIC (1987) 

Manufacturing 
1 Food and related products IO, 11 20 
2 Textiles and apparel 18-24 22, 23 
3 Lumber and furniture 25, 26 24, 25 
4 Paper products 27 26 
5 Industrial chemicals 371, 373 28 I, 282, 286 
6 Drugs 374 283 
7 Other chemicals 372, 375-379 284, 285, 287-289 
8 Petroleum ref. and extraction 36, 7, 9 13, 29 
9 Rubber products 15, 16 30 

10 Stone, clay and glass products 35 32 
11 Primary metals 29 33 
12 Fabricated metal products 30 34 
13 Office and computing machines 336 357 
14 Other non-electrical machinery 31 351-356, 358, 359 
15 Communication and electronic 335 366, 367 
16 Other electrical equipment 331-334, 337-339 361-365, 369 
17 Transportation equipment 323-329 371, 373-375, 379 
18 Aircraft and missiles 321 372, 376 
19 Prof. and scientific instruments 391 38 
20 Other manufacturing 12, 17, 28, 392-399 21, 27, 31, 39 

Non-manufacturing 
21 Agriculture and forestry 1-5 1-9 
22 Mining ( except oil) 6, 8 IO, 12, 14 
23 Construction 40-44 15-17 
24 Transportation and utilities 45-49 40-49 
25 Wholesale and retail trade 50-69, 92 50-59 
26 Finance, insurance and real estate 70-76 60-67 
27 Services and government 77, 81-91, 93-99 70-99 

Based on US Bureau of the Census ( 1991). The following adjustments are made at the three-digit and 
four-digit levels to the above groupings:(#, Canadian SICs); (2, 3257); (3, 2714); (4, 1691); (11, 3381, 
3922); (14, 3081); (19, 1994); (20, 2581); (22, 0921, 0929); (24, 7794, 8631, 996); (26, 4491); (27, 0239, 
4411, 4522, 6213, 635,639, 6562). 

3. 2. Tests of the YTC 

We create two subsets of the data (1 and 2) by breaking the sample along the time 
dimension or along the residence-of-inventor dimension. 17 The first subset of the 
data is used to estimate the matrix A. This, together with patents by IPC in the 
second subset, is used to predict patents by industry in the second subset of the 
data. Let A(l) be the matrix of conditional probabilities estimated from subset 1. 
Our prediction of patents by industry in subset 2 is 

E[Y(2)ix(2)] = A(l) 'x(2) 

We compare these predictions with Y(2) and with a naive prediction. Our naive 
prediction is obtained by scaling patents by industry in subset 1 to account for 
differences in the number of patents in the two subsets, i.e. nz/n1 [Y(l)], where nk 
is the number of patents in subset k, for k = I, 2. 
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Table 2. Patents from US inventors, by IOM 

Actual less predicted 
Estimated 

Sector Actual Nai"ve Concordance SE 

Manufacturing 
1 Food and kindred products 1 294 339.60 141.54 40.940 
2 Textiles and apparel 1 576 135.59 106.69 48.943 
3 Lumber and furniture 1 214 - 300.88 - 64.57 42.788 
4 Paper products 1 639 410.24 206.23 48.268 
5 Industrial chemicals 11 785 - 4 624.94 - 359.50 110.913 
6 Drugs 6 207 180.78 92.67 80.846 
7 Other chemicals 8 113 467.05 397.29 102.459 
8 Petroleum ref. and extraction 481 103.75 - 16.36 28.452 
9 Rubber products 5 198 219.26 112.68 90.419 

10 Stone, clay and glass products 1 544 - 88.47 43.50 48.081 
11 Primary metals 1 508 - 148.97 - 52.45 49.777 
12 Fabricated metal products 7 010 - 581.08 - 161.19 105.772 
13 Office and computing machines 5 813 2 021.87 384.56 95.661 
14 Other non-electrical machinery 23 042 - 3 066.73 - 1 096.26 180.286 
15 Communication and electronic 13 149 - 116.53 - 190.75 134.941 
16 Other electrical equipment 9 883 1 225.82 277.50 124.320 
17 Transportation equipment 5 323 743.07 28.33 88.710 
18 Aircraft and missiles 379 51.72 12.74 26.695 
19 Prof. and scientific instruments 13 951 3 933.75 286.23 148.080 
20 Other manufacturing 4 693 - 699.24 -44.08 87.368 

Non-manufacturing 
21 Agriculture and forestry 37 -47.27 - 16.81 9.686 
22 Mining (except oil) 18 - 15.32 - 14.11 8.016 
23 Construction 188 - 107.92 -8.14 17.921 
24 Transportation and utilities 54 -4.79 - 17.07 14.158 
25 Wholesale and retail trade 30 -4.30 - 1.90 8.055 
26 Finance, insurance and real estate - 1.00 - 1.00 0.000 
27 Services and government 116 - 27.06 - 47.77 18.994 

28 Total 124 246 0.00 0.00 NIA 

'Actual' refers to patents as classified by the CIPO. The 'nai:ve' prediction is that the fraction of patents 
in each industry is the same between patents granted to US inventors and all others. The 'concordance' 
prediction is as described in the paper, with conditional probabilities estimated from patents granted to 
non-US inventors. The estimated standard errors (SE) are for the predictions from the concordance. 

3.2.1. Patents granted by US inventors. In this test, subset 2 represents patents 
granted to US inventors and subset 1 is patents granted to non-US inventors. Each 
subset contains about 130 000 patents. 

Table 2 shows the results for the IOM. The first column shows the actual 
assignment to the IOM of patents granted to US inventors. Note that essentially 
all the patents are assigned to one of the 20 manufacturing industries. The second 
column shows the difference between the actual industry assignment and the na'ive 
prediction of patents by industry (assuming that US-inventor patents and those 
belonging to inventors from elsewhere are assigned to the different industries in the 
same proportions). The third column is the difference between the actual industry 
assignment and the predictions by industry based on the YTC. For example, the 
first row shows that there were 1294 US-inventor patents assigned to the food 
industry; the na'ive procedure underpredicted this number by 370 patents, while 
the YTC underpredicted this number by 142 patents (hence, the actual prediction 
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Table 3. Patents from US inventors, SOU 

Actual less predicted 
Estimated 

Sector Actual Naive Concordance SE 

Manufacturing 
l Food and related products 2 748 - 399.81 - 145.879 62.142 
2 Textiles and apparel 1 722 - 103.67 20.099 50.767 
3 Lumber and furniture 865 - 328.60 - 112.877 38.660 
4 Paper products 1 989 -571.19 - 14.747 53.728 
5 Industrial chemicals 8 572 - 1 229.99 -134.342 111.257 
6 Drugs 6 608 - 3 639.53 -369.479 90.081 
7 Other chemicals 4 900 - l 693.29 - 632.862 94.968 
8 Petroleum ref. and extraction 5 258 2 260.96 930.601 91.380 
9 Rubber products 5 457 - 26.78 203.208 87.312 

10 Stone, clay and glass products l 740 - 144.63 - 21.490 51.915 
11 Primary metals 2 271 - l 777.56 -329.253 60.445 
12 Fabricated metal products 4 413 76.43 229.587 83.980 
13 Office and computing machines 5 943 2 144.75 369.170 99.190 
14 Other non-electrical machinery 11 432 951.55 - 88.520 140.615 
15 Communication and electronic 12 096 -40.99 - 43.396 128.601 
16 Other electrical equipment 6 710 459.81 - 257.588 107.113 
17 Transportation equipment 7 951 l 350.94 269.340 108.214 
18 Aircraft and missiles 791 255.57 135.399 37.278 
19 Prof. and scientific instruments 4 548 765.22 16.598 91.992 
20 Other manufacturing 3 020 - 25.36 - 39.303 70.704 

Non-manufacturing 
21 Agriculture and forestry 2 137 - 792.38 -289.374 57.228 
22 Mining (except oil) 653 -377.26 - 171.889 37.310 
23 Construction 5 015 - l 098.92 - 163.723 88.839 
24 Transportation and utilities 4 588 -269.50 -125.111 91.335 
25 Wholesale and retail trade 2 080 126.75 51.982 61.978 
26 Finance, insurance and real estate 119 -9.54 - 12.843 17 .196 
27 Services and government 15 928 4 137.01 726.693 153.178 

28 Total 129 554 0.00 0.000 NIA 

'Actual' refers to patents as classified by the CIPO. The 'naive' prediction is that the fraction of patents 
in each industry is the same between patents granted to US inventors and all others. The 'concordance' 
prediction is as described in the paper, with conditional probabilities estimated from patents granted 
to non-US inventors. The estimated standard errors (SE) are for the predictions from the 
concordance. 

from the concordance was 1152). In all the manufacturing industries, with the 
exception of communication equipment, the YTC prediction error is less than the 
nai:ve prediction error. The most dramatic improvements are in 'industrial chemi­
cals' (5), 'computing' (13), 'other electrical equipment' (16) and 'instruments' 
(19). 

For each manufacturing industry, except 'food' (1) and 'paper' (4), the 
prediction error from using the YTC is less than 10% of the actual number of 
patents assigned to the industry. The last column of Table 2 shows the estimated 
standard errors of the predictions. In most industries, the absolute value of the 
YTC prediction error is less than twice its estimated standard error. None the less, 
there is some evidence that the estimated standard errors understate the true 
uncertainty attached to the predictions from the YTC. 
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Table 4. Patents granted or published after 1989, by IOM 

Actual less predicted 
Estimated 

Sector Actual Nai"ve Concordance SE 

Manufacturing 
1 Food and related products 1 282 - 12.26 - 62.06 42.722 
2 Textiles and apparel 1 613 - 268.01 - 599.91 68.967 
3 Lumber and furniture 1 608 95.84 6.36 56.984 
4 Paper products 1 754 258.90 - 21.39 61.597 
5 Industrial chemicals 17 421 2 836.26 77.29 152.315 
6 Drugs 8 924 4 417.71 96.50 158.492 
7 Other chemicals 9 111 178.49 - 662.07 128.262 
8 Petroleum ref. and extraction 477 - 33.62 -82.40 33.929 
9 Rubber products 6 416 1 345.27 628.92 110.787 

10 Stone, clay and glass products 1 652 - 393.09 -428.45 65.080 
11 Primary metals 1 596 -508.16 - 391.61 62.043 
12 Fabricated metal products 7 615 - 1 759.87 - 1 104.23 125.133 
13 Office and computing machines 6 662 2 697.83 2 904.12 83.827 
14 Other non-electrical machinery 26 544 - 3 834.43 729.17 193.210 
15 Communication and electronic 13 000 - 4 966.10 -3496.15 154.727 
16 Other electrical equipment 8 041 - 5 974.06 - 3 001.29 130.245 
17 Transponation equipment 6 092 966.14 1 500.18 84.269 
18 Aircraft and missiles 496 211.16 150.73 24.974 
19 Prof. and scientific instruments 15 598 4 340.80 4 059.67 143.702 
20 Other manufacturing 5 665 - 282.57 - 1 016.63 112.598 

Non-manufacturing 
21 Agriculture and forestry 123 - 123.00 - 123.00 0.000 
22 Mining (except oil) 12 - 40.51 - 28.79 8.787 
23 Construction 367 205.55 230.65 17.272 
24 Transponation and utilities 114 - 114.00 - 114.00 0.000 
25 Wholesale and retail trade 64 62.69 62.24 2.188 
26 Finance, insurance and real estate 1 - 1.00 - 1.00 0.000 
27 Services and government 243 218.06 211.14 5.710 

28 Total 142 491 0.00 0.00 N/A 

'Actual' refers to patents as classified by the CIPO. The 'nai"ve' prediction is that the fraction of patents 
in each industry is the same for patents granted before or after the end of 1989. The 'concordance' 
prediction is as described in the paper, with conditional probabilities estimated from patents granted prior 
to 1989. The estimated standard errors (SE) are for the predictions from the concordance. 

Table 3 presents broadly similar results for SOU. There are now 21 of the 27 
industries in which the concordance predictions improve on the naive predictions. 
In this application, for both the IOM and the SOU, the YTC performs quite well. 
It does appear, however, that the estimated standard errors must be viewed 
sceptically. 

3.2.2. Patents granted or published after 1989. In this test, subset 2 is patent 
applications published after 1989 and subset 1 is patents granted during 1983-89. 
Subset 2 contains more patents, because it includes applications that were pub­
lished but that may never be granted. 

Table 4 shows the results for the IOM. Once again, the YTC generally 
outperforms the naive predictions. However, in this case, there are a number 
of manufacturing industries-'textiles' (2), 'petroleum' (8), 'stone clay glass' (10), 
'primary metals' (11), 'fabricated metals' (12), 'computing' (13), 'communication 
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Table 5. Patents granted or published after 1989, by SOU 

Actual less predicted 
Estimated 

Sector Actual Nai:ve Concordance SE 

Manufacturing 
1 Food and related products 3 956 1 255.48 523.35 85.282 
2 Textiles 2 026 - 62.98 - 250.11 65.100 
3 Lumber and furniture 1 225 71.78 - 153.73 55.543 
4 Paper products 3 011 866.66 402.04 75.133 
5 Industrial chemicals 10 295 - 801.00 - 899.47 143.969 
6 Drugs 11 565 4 123.73 1 512.80 157.318 
7 Other chemicals 6 875 486.79 351.70 114.619 
8 Petroleum ref. and extraction 3 317 - 3 328.21 - 1 295.74 84.071 
9 Rubber products 6 836 1 175.31 395.63 121.174 

10 Stone, clay and glass products 2 061 - 85.98 76.69 61.697 
11 Primary metals 3 222 - 1 045.59 365.54 66.715 
12 Fabricated metal products 4 567 - 1 143.77 - 677.82 105.717 
13 Office and computing machines 6 581 2 242.24 2 110.91 88.303 
14 Other non-electrical machinery 12 470 -454.03 708.23 143.295 
15 Communication and electronic 12 546 -3411.99 -2 032.45 148.210 
16 Other electrical equipment 6 477 - 2 353.41 - 505.34 110.896 
17 Transportation equipment 8 562 366.86 800.73 113.128 
18 Aircraft and missiles 883 274.10 150.37 38.639 
19 Prof. and scientific instruments 5 893 2 507.13 2 746.86 81.780 
20 Other manufacturing 3 509 0.56 -78.46 89.421 

Non-manufacturing 
21 Agriculture and forestry 2 625 -726.60 -485.02 72.388 
22 Mining ( except oil) 635 - 793.68 -383.87 42.273 
23 Construction 6 336 - 260.45 - 549.01 114.640 
24 Transportation and utilities 4 743 - 1 676.84 - 934.35 105.671 
25 Wholesale and retail trade 2 342 23.69 - 327.19 84.768 
26 Finance, insurance and real estate 135 - 19.20 - 69.48 23.754 
27 Services and government 17 188 2 769.40 - 1 502.81 197.778 

28 Total 149 881 0.00 0.00 NIA 

'Actual' refers to patents as classified by the CIPO. The 'nai:ve' prediction is that the fraction of patents 
in each industry is the same for patents granted before or after the end of 1989. The 'concordance' 
prediction is as described in the paper, with conditional probabilities estimated from patents granted prior 
to 1989. The estimated standard errors (SE) are for the predictions from the concordance. 

equipment' (15), 'other electrical equipment' (16), 'transportation equipment' 
(17), 'aircraft' (18), 'instruments' (19), and (20) 'other'-in which the concord­
ance errors exceed 10% of the actual patents assigned. The prediction errors 
exceed 25% of the actual patents assigned for six of these industries. In most 
industries, the estimated standard errors appear to be far too small. 

The results for the SOU (Table 5) are much the same. The YTC performs 
particularly poorly in 'petroleum' (8), 'computing' (13), 'instruments' (19), 'min­
ing' (22) and 'finance' (26). In these five industries, the prediction errors exceed 
25% of the actual patents assigned. 

In trying to predict patents by industry after 1989, the concordance makes 
substantial errors. 18 It is likely that errors of this magnitude or greater are a fact 
of life in using the YTC to predict patents by industry in other countries. 
Unfortunately, our estimated standard errors may not pin-point the problem 
industries. This is because the shifts in the underlying conditional probabilities that 
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generate large prediction errors also invalidate our estimated standard errors. 
However, it is still the case that the IPC assignments of patents are useful in 
predicting their industry assignments. This can be seen in Tables 4 and 5, by the 
tendency of the concordance prediction error to be less than the na'ive prediction 
error. 

3.2.3. Annual estimates. We now investigate more carefully the time-series proper­
ties of the concordance prediction errors. If the errors in predicting patents by 
industry after 1989 arose from persistent shifts in the underlying YTC probability 
matrix A, then we should observe the prediction errors within a given industry as 
being highly correlated over time. However, if errors are highly persistent, then it 
may be that the variation over time of the predicted patents for a given industry 
is quite informative about the variation over time in patents actually assigned to the 
industry. 

To pursue these hypotheses, we compare the actual and predicted patents by 
industry for each year during 1989-93. The matrix A is estimated using patents 
granted during 1983-88. To avoid having the results affected by the discontinuity 
in patenting between 1989 and 1990, we look at shares of patenting by industry. 
In other words, both the actual and the predicted patents by industry for a given 
year are divided by the total patents in that year. 

A series of plots presenting the results are available on request from the 
authors. The bottom line is that the errors in the concordance do display 
persistence over time. Nevertheless, the concordance predictions often succeed in 
picking up the time-series variation in actual patent assignments. This is import­
ant, because it is often the time-series variation-rather than the overall 
level-which is of most interest for economic analysis. 

4. Conclusions 

In this paper, we have presented a formal statistical method for predicting patent 
counts by industry. It would be a great help to economic researchers if each 
national patent office made these assignments; however, in fact, only the Canadian 
patent office does so. We have used the industry and technology assignments of 
Canadian patents to develop a method that can be used to predict patent counts 
by industry in all countries that group their patents according to the IPC system 
(most countries do so). 

The method's out-of-sample prediction errors are evaluated on subsets of the 
Canadian data. The results ae encouraging. The prediction error is generally 
smaller than would be the case if the predictions were based on constant shares of 
patents being assigned to each industry. Furthermore, the prediction error is 
generally moderate relative to the number of patents assigned to an industry 
(usually less than 10% for patents granted to US inventors and usually less than 
25% for patents published after 1989). Even when errors are large, the predictions 
from the YTC often reflect the time-series variation in the patents assigned to an 
industry. When compared with alternatives, such as manual assignment of each 
patent to an industry, the YTC looks quite attractive. 

By developing the YTC within a statistical framework, we can estimate 
standard errors for our predictions. In theory, these standard errors could be 
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incorporated into subsequent studies that use the patents by industry as data. In 
practice, it appears that these standard errors have a considerable downward bias. 
Our hypothesis is that the instability in the concordance relationships over time 
leads us to underestimate the true standard errors. 19 

If the YTC proves to be a useful tool for researchers, then it will be applied 
over different time periods to patent data from many different countries. This 
paper provides some evidence on the magnitude of the industry assignment errors 
that are likely to result. We have shown that shifts in industry assignments 
conditional on technology assignments can lead to large prediction errors over time 
in some industries. We also provide indirect evidence on how well the concordance 
will work when applied in countries other than Canada. As shown in Tables 2 and 
3, we predict quite accurately the industry assignments of US-inventor patents, 
based on the industry and technology assignments of non-US-inventor patents. 
Thus, variation in the source country of patented inventions may pose few 
problems for the YTC. Of course, all our evidence is based on the selected sample 
of inventions that were worth patenting in Canada. It is possible that the country 
in which patent protection is sought matters more for the reliability of the YTC 
than does the source country. We await comparisons with industry-level data in 
other countries to resolve this issue. 

Notes 

1. A number of papers have used early versions of the Yale Technology Concordance. For example, 
Evenson (1991) and Kortum (1993) look at the behavior of the patent: R&D ratio at the industry 
level, while Kortum and Lach (1995) estimate the relationship between patenting and productivity 
growth in US industries. Earlier efforts to count patents at the industry level include those of 
Schmookler (1966) and Scherer (1984). 

2. We use the IPC at a level of detail that includes about 6000 distinct technology fields. 
3. The industries are defined at the four-digit level of the Canadian Standard Industrial Classification 

(CSIC) system. The task of assigning industries is performed by a staff of patent classifiers. These 
individuals are trained in the industry classification system, although their main job is to assign 
technology codes. The CSIC codes are similar, but not identical, to US SIC codes. For example, 
there is no classification for 'rockets' under the CSIC. However, it is possible (with the help of the 
US Bureau of the Census (1991)) to aggregate the Canadian codes to the level at which 
internationally comparable R&D data are collected by the Organization for Economic Cooperation 
and Development (OECD). In this paper, we construct aggregates that match industries for which 
R&D data are collected in the US. 

4. See Johnson (this issue) (1995) for a comparison of patents by industry as assigned by the CIPO 
and industry-level data from innovation surveys. 

5. Since October 1989, Canada has published patent applications 18 months after the date of 
application, regardless of whether or not the patents would eventually be granted. The data set 
includes all these published applications. 

6. The USPC is very detailed, including 100 000 classes (about 50 000 in Schmookler's time). It is 
even more 'technologically oriented' (hence, less 'industry oriented') than the IPC. This means 
that patents are classified by how they accomplish a cenain task, rather than by the service they 
provide. For example, a heart pump is a 'pump' under the USPC, and not a 'medical device'. 

7. The OTAF concordance is described in Marmor et al. (1979). Scherer (1982) points to several 
deficiencies in the original concordance. An extensive review and assessment are provided in Patent 
and Trademark Office (1985). 

8. We assume that a patent is assigned to only one IOM and only one SOU. In reality, the CIPO 
assigned up to three IOMs and three SOUs; also, patent offices often assign multiple IPCs to a 
single invention. Incorporating this additional information, by identifying 'principle' and 'second­
ary' assignments, complicates the methodological issues and requires additional assumptions on 
the appropriate weights to attach to each assignment. Therefore, we assume that the first 
classification is the only one. In the following section, we discuss why this is a reasonable assumption. 
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9. See Bishop et al. (1977, p. 63) for a discussion of the sampling scheme that generates the 
multinomial distribution. 

10. Because the same invention may be patented in several countries, it is likely that E and 1J are 
positively correlated. By assuming independence, we obtain an upper bound on the variance of the 
difference between them (u). 

11. Tabulations of the data indicate a discontinuity in patenting by the SIC, pre- and post-1982. 
Individuals at the CIPO recommended using the post-1982 data, because industry assignment 
procedures improved and industry definitions stabilized. 

12. For example, group D05C 009 contains patents on automatic embroidering machines. 
13. Some patents, which are of very general use, are not assigned an SOU, and process patents, with 

no tangible apparatus, are not assigned an IOM. Canadian patents are assigned to four-digit 
industries as defined in the 1980 version of the CSIC. A concordance between the 1980 version 
of the CSIC and the 1987 version of the SIC has been developed by the US Census and Statistics 
Canada (US Bureau of the Census, 1991). About 4% of patents are assigned to a four-digit SIC 
ending in zero, such as 2710. Such industries do not appear in the CSIC system. In these cases, 
the industry assignment is only meaningful at the three-digit level. 

14. In Kortum and Putnam (1989a), x2 tests of the stability of the A matrix were performed. Those 
tests always reject the null hypothesis of a stable A matrix, but they are not informative about how 
well the YTC will make out-of-sample predictions in practice. 

15. In principle, because we condition on patents by technology field, the more detailed the technologi­
cal classification is, the better will be the results. In practice, moving to greater detail entails 
considerable computational and data storage burdens. Furthermore, the definitions in the IPC are 
more likely to change over time at the subgroup level of the IPC. Keeping track of such changes 
as they are adopted in different countries would be extremely difficult. 

16. The relationship between the CSIC and the SIC shown in Table 1 was checked against the 
concordance produced by the US Census and Statistics Canada (US Bureau of the Census, 1991). 

17. The objective was to break the sample along a dimension in which shifts in the concordance 
relationships may have occurred. Another approach would be to create two data sets by randomly 
sampling from the original data set. This second approach would essentially mimic the theory used 
to derive the YTC. In this sense, it would not provide a powerful test of the YTC. 

18. A factor that may be contributing to errors over time is changes in the IPC. The IPC system is 
supposed to be updated by the World Intellectual Property Organization every 5 years. We have 
chosen to ignore these updates, but it may be possible to keep track of the version of the IPC in 
applying the concordance. 

19. A possible source of instability in the concordance is shifts over time in the industry structure in 
Canada. One method of modelling these shifts, but one that requires additional restrictions along 
other dimensions, is pursued by Kortum and Putnam (1989b). Unfortunately, in practice, that 
method did not tum out to be an improvement over the approach followed here. 

References 
Bishop, Y. M. M., Fienberg, S. E. & Holland, P. W. (1977) Discrete Multivariate Analysis: Theory and 

Practice (Cambridge, MA, MIT Press). 
Ellis, E. D. (1981) The philosophy, construction and uses of the Canadian patent data base PATDAT, 

World Patent Information. 
Evenson, R. E. ( 1991) Patent data by industry: evidence for invention potential exhaustion?, in: 

Technology and Productivity: The Challenge for Economic Policy (Paris, Organization for Economic 
Cooperation and Development), pp. 233-248. 

Evenson, R. E., Putnam, J. & Kortum, S. (1991) Estimating patent counts by industry using the 
Yale-Canada concordance, Final Report to the National Science Foundation. 

Griliches, Z. ( 1990) Patent statistics as economic indicators: a survey, Journal of Economic Literature, 
December, pp. 1661-1707. 

Kortum, S. (1993) Equilibrium R&D and the patent-R&D ratio: US evidence, American Economic 
Review: Papers and Proceedings, 83, pp. 450-457. 

Kortum, S. & Putnam, J. (1989a) Estimating patents by industry: Part I, unpublished. 
Kortum, S. & Putnam, J. (1989b) Estimating patents by industry: Part II, unpublished. 
Kortum, S. & Lach, S. (1995) Patents and productivity growth in US manufacturing industries, 

unpublished. 



Testing the YTC 175 

Marmor, A. C., Lawson, W. S. & Terapane, J. F. (1979) The technology assessment and forecast 
program of the United States Patent Office, World Patent Infonnacion, 1, pp. 15-23. 

Patent and Trademark Office ( 1985) Review and Assessment of the OT AF Concordance between the US 
Patent Classification and the Standard Industrial Classification Systems: Final Report (Office of Technol­
ogy Assessment and Forecast, January). 

Schmookler, J. (1966) Invention and Economic Growth (Cambridge, MA, Harvard University Press). 
Scherer, F. M. (1982) The Office of Technology Assessment and Forecast industry concordance as a 

means of identifying industry technology origins, World Patent Infonnacion, 4, pp. 12-17. 
Scherer, F. M. (1984) Using linked patent and R&D data to measure interindustry technology flows, 

in: Z. Griliches (ed.) R&D, Patents, and Productivity (Chicago, IL, University of Chicago Press), pp. 
417-464. 

US Bureau of the Census ( 1991) Concordance between the Standard Industrial Classifications of the United 
Scates and Canada: 1987 United States SIC-1980 Canadian SIC (US Bureau of the Census and 
Statistics Canada, February). 


	Assigning Patents to Industries_ Tests of the Yale Technology Concordance.pdf
	Assigning Patents to Industries_ Tests of the Yale Technology Concordance 2.pdf

