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Assigning Patents to Industries: Tests of the Yale
Technology Concordance

SAMUEL KORTUM & JONATHAN PUTNAM

ABSTRACT We describe a method to predict patent counts disaggregated by industry,
using available data on patenting by technology field. This method—the Yale Technology
Concordance (YTC)—exploits a data set of patents that have been individually assigned
by the Canadian Patent Olffice to both an industry and a technology field. The procedure
Jor predicting patents by industry ts developed as a statistical model so that the standard
errors of the predictions can be esttimated. The YTC 1is tested on several subsets of
Canadian patents by comparing out-of-sample predictions with industry assignments
made by the Canadian Patent Office. We find that the predictions of patents by industry
are quite accurate for the subset of patents from US inveniors. The prediction errors are
much greater for the subser of patents granted or published after 1989. This suggests that
the relationship between the technology fields and industries has shifted in a way that the
procedure does not capture. Nonetheless, predictions from the YTC do appear to give a
reasonably accurate picture of the pattern of patenting by industry.

KEYWORDS: Patents, Yale Technology Concordance, industry classtfication, Canada

1. Introduction

Patents have proved to be useful indicators of research activity and technological
change in a number of economic studies (Griliches, 1990). However, patent data
have not been available at the industry level—a unit of analysis at which data on
research expenditure and productivity growth are collected. As a consequence,
certain empirical issues, such as the link between patenting and productivity
growth, have received little attention.! In this paper, we present a method of
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predicting patents by industry, using widely available information on the distri-
bution of patenting across technology fields.

Our method of predicting patents by industry relies on a unique data set from
the Canadian Intellectual Property Office (CIPO). Similarly to most patent offices,
the CIPO assigns a technology field from the International Patent Classification
(IPC) system to each patent it issues.”? However, unlike other patent offices, the
CIPO also assigns an industry of manufacture (IOM) and a sector of use (SOU)
to most patents.’ For a product patent, the IOM is the industry that manufactures
the product, and the SOU is the industry (or sector) that uses it; however, for a
process patent, an IOM is only assigned if the process includes some apparatus
(Ellis, 1981). Both concepts appear to be useful, so we provide a means of
predicting patents by either IOM or SOU.* We examine the industry and technol-
ogy assignments of over 250 000 patents issued in Canada from 1983 through
19933

The key assumption that underlies our strategy is that the probability of a
patent being assigned to a given industry is a function of the technology field of the
patent and nothing else. In particular, we assume that the probability of industry
assignment conditional on technology assignment does not depend on the country
where the patent originates, or the date when it is issued. We estimate these
conditional probabilities from the Canadian data and then apply them to patents
in other countries or time periods where we know only the technology field of the
patents.

Using the Canadian data to assign patents to industries in other countries was
originally pursued by Evenson at Yale; hence, the name Yale Technology Con-
cordance (YTC) (Evenson et al., 1991). The term ‘concordance’, however, is
somewhat misleading, because it implies a deterministic assignment of each
technology field to a specific industry. We develop the YTC in a probabilistic
framework. The technology field of a patent determines the probability distri-
bution over possible industries to which the patent might be associated. An
advantage of this approach is that approximate standard errors of the predictions
can be calculated.

A simple example will illustrate our approach. Suppose that there are only three
technology fields (a, b and ¢) and two industries (1 and 2). The following matrix
gives the probabilities of a patent being associated with a given industry con-
ditional on the technology field of the patent:

technology\industry 1 2
a 0.5 05
b 03 0.7
c 1.0 0.0

A patent from technology a is equally likely to be associated with industry 1 or
2, while a patent from technology b is more than twice as likely to be associated
with industry 2. A patent from technology ¢ is always associated with
industry 1. Assume that this set of conditional probabilities is known (in practice,
it will be estimated from the Canadian data). Suppose that, in Japan, we observe
60 patents in technology a, 100 patents in technology & and 10 patents in
technology ¢. The prediction of patents by industry in Japan would be
0.5X60+0.3X100+ 1.0 X10=70in industry 1, and 0.5 X 60 + 0.7 X 100 = 100
in industry 2. In the following, we show that the standard error of the prediction
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is 6. Taking account of uncertainty in the estimates of the conditional probabilities
themselves would lead to a larger standard error.

We are not the first researchers to use patents by class to infer patents by
industry. Schmookler (1966) assigned patents by US patent class (USPC) to
selected industries of use.® His classification rule assigned all the patents in a
USPC class to an industry if he determined that at least two-thirds of the patents
in the class were used by that industry. The Office of Technology Assessment and
Forecast (OTAF), which is part of the US Patent and Trademark Office, also
developed a concordance similar to that of Schmookler.” In cases where a USPC
was related to several industries, the patents in that class were assigned in equal
fraction to each of those industries.

In principle, the YTC has several advantages over the OTAF concordance.
First, the relation between technology fields and industries is inferred from the
assignment to a technology field and an industry of over 250 000 patents. The
individual industry assignments are made by trained personnel of the CIPO. There
is no need to use judgement in determining the overall connection between
technology fields and industries. Second, the YTC uses the IPC (an international
standard for classifying patents by technology) rather than the USPC (which is
only used in the US). Hence, the YTC can be applied to patent data from a wide
set of countries. Third, we explicitly model the error that is inherent in predicting
patents by industry. This allows us to quantify the degree of uncertainty attached
to our prediction of patents by industry.

Of course, these advantages are in principle, and not necessarily in practice. In
this paper, we test the YI'C to obtain some idea of how accurate it will be in
practice. First, we pretend that, for patents granted in Canada to US inventors, we
have only information on the technology field. We then use the YTC to predict
patents by industry for this subset of Canadian patents, and we compare these
predictions with actual industry assignments made by the CIPO. We perform a
similar exercise for patents granted or published after 1989, The results indicate
that the YT C gives a reasonably accurate picture of the pattern of patenting by
industry. However, as a result of shifts over time in the relationship between
technology fields and industries, our estimated standard errors appear to be much
too small.

In the next section, we develop the statistical model that underlies our
procedure. The third section then tests the method on the Canadian data. The
fourth section concludes.

2. The Statistical Model

We assume that every patent is associated with exactly one of j=1,..., ¥
industries and is assigned to exactly one of i=1,. .., I technology fields.® Let a;
be the probability that a patent will be associated with industry j, given that it is
in technology field . We have

a; = Pr[industry = j | technology field =]

The J-dimensional column vector of these conditional probabilities for a given
technology field ¢ is

a;= (ai1, ans . .., ay)’
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These vectors, 1= 1, ..., I, form the rows of an I by ¥ matrix, i.e.

aj

A=

aj
The key assumption that underlies the YT'C is that the matrix A does not vary with
time or with the country that issues the patent. In particular, we want to estimate
A using the Canadian data set, and then use it to predict patents by industry in
other countries and over other time periods.

2.1. Inference Conditional on A

In this section, we treat the matrix A as if it were known. We assume that we are
given data on patents by technology field, x= (xi, ..., xp)’'. These data will be
used to predict the unknown random vector, giving the number of patents
associated with each industry, i.e. Y=(Y},..., Yy'. By construction, we have
Ef: 1 Y= >I_, x;. In the numerical example above, x = (60, 100, 10)'.

Our goal is to derive expressions for the expectation of Y conditional on x
(E[Y|x]) and for the variance of expectation errors (E[ee’], where € = Y — E[Y|x]).

It is convenient to let Y}; be the random number of patents in technology ¢ and
industry ;. Then, Y,= (Y., ..., Y’ is the random vector of patents in technology
i by industry and Y=3/_, Y.

If the matrix A of conditional probabilities is actually constant, then the
random vector of patents by industry in technology 7 has a multinomial distri-
bution,’ i.e.

Y~ M(x; a)
Thus, E[Yix;] = xa;. Letting ¢;=Y,;— E[Yx], E[ee] = xi[diag(a)) — a;a]], where
diag(a) refers to the diagonal matrix with elements of a on the diagonal.

We can now calculate the expectation of patents by industry over all technology
fields as

E[Y|x] = é E[Y|x] = i xa;=A'x
Furthermorle_, 1by the ind;)::ndence of Y;, we have

E[ee'] = i x;[diag(a;) — a;a]] = diag(A'x) — A’ diag(x)A
Returning tl(; lthe numerical example from the introduction, we have

05 05
A=| 03 0.7
1.0 0.0

A’x = (70, 100)’ and

, 36 —36
Elee’] = (—36 36 )

The square root of the diagonal elements yields the standard error of 6 mentioned
in the introduction. Note that the two elements of Y are perfectly negatively
correlated. An unexpectedly large number of patents associated with industry 1
must come at the expense of industry 2. With more than two industries, there is
still no error in the prediction of the sum of patents over all industries, because the
sum is known to equal !, x.
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2.2. Estimating A

To apply the concordance, we will estimate the matrix A from the Canadian data
set. A superscript 0 will identify variables as being associated with the Canadian
data. Thus, xis the number of patents in the Canadian data set in technology field
i and the random vector of how these patents distribute over industries is Y2 The
maximum likelihood estimator (MLE) of the vector a; is 4; = Y?/x? The matrix A
has its 7th row given by &/.

In what follows, it is convenient to denote E[Y|x] by the symbol @. Because A
is the MLE of A, and ® = A'x, it follows that the MLE of © is

0= A'x

Note that @ is simply a weighted sum of independent multinomial random
variables. Its mean is ®. Thus, letting m = ®— 0, the variance matrix of v is

1
Xi ¢ 4.
EM']=>, % [diag(a,) — a;a]]
i=1 1

We can now combine the two sources of uncertainty associated with predicting
patents by industry. The first source arises because the technology field of a patent
generally does not exactly determine the industry with which it will be associated.
The second source arises because the probability of an industry assignment,
conditional on the technology field of the patent, is not known with certainty, but
must be inferred from the finite sample of Canadian assignments. Thus, we have

Y=®+£—n=A’x+u

where u = € — 1. We make the conservative assumption that € and m are indepen-
dent.'® Thus, letting Q = E[uu’], we have

I B
Q=3 x(l+ ’f& [diag(a) — a:a]
=1 1

An estimate Q of £ is obtained by replacing a; in the above formula with an
estimate of it, i.e. &,

Continuing with our numerical example, suppose the matrix A is an estimate,
i.e. A, based on data from Canada. If patents by technology field in Canada are
x° = (30, 100, 20)’, then

_ 87 87
= (—87 87)

The standard error in predicting patents by industry rises from 6 to over 9.

3. Testing the Concordance on the Canadian Data

In applying the YTC, we will use the Canadian data to estimate the conditional
probabilities in the matrix A. However, the Canadian data also provide a means
to test the underlying assumptions of our statistical model. To understand how this
can be achieved requires a more complete description of the data set.
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3.1. The Canadian Data Set

The Canadian data set (referred to as PATDAT) includes all inventions patented
in Canada during 1978-93. We omit patents issued prior to 1983, because
industry assignments in the earlier years are less reliable.!' Essentially all the
remaining patents (about 250 000) are assigned an IPC code, at the level known
as an ‘IPC group’.!? Almost 7000 distinct groups appear in the data set.

Over 92% of the patents are assigned a four-digit CSIC for the primary SOU,
and over 87% are assigned a primary IOM.!? Less than 8% of patents are assigned
more than one IOM, and about 20% are assigned to more than one SOU. In about
half these instances of multiple-industry assignment, all four-digit industries are in
the same two-digit industry. Because the multiple assignments are relatively
infrequent, and are often made to the same broadly defined industry, we ignore all
but the primary IOM and the primary SOU.

We maintain two versions of the Canadian data set and construct two concor-
dances: one for SOU and one for IOM. Within each data set, we simply delete
patents that are not assigned to an industry.

The inventions patented in Canada come from residents of many countries.
Only 7% come from Canadian inventors. About half are from US inventors.

To test the YT'C, we split the Canadian data along two dimensions. We split
it over time, considering patents issued during 1983-89 against patents issued after
1989. We also split it by country of inventor, considering patents issued to US
inventors vs all other patents. For each split, we estimate the matrix A from the
first subsample and then use it to predict patents by industry in the second
subsample, based on patents by IPC in the second subsample.!*

To apply this test, we need to determine the number of technology fields and
the number of industries. For the analysis that follows, we consider technology
fields at the level of IPC groups.!®

We aggregate all four-digit CSIC into 27 industries, as listed in Table 1. The
20 manufacturing industries correspond closely to the industries for which the
National Science Foundation (NSF) collects R&D expenditures.’® The seven
non-manufacturing industries are defined quite broadly, because they generally use
few patents and almost never manufacture them. Although the Canadian data have
more industry detail, using this detail increases the potential errors in applying the
concordance. For example, a patent in a certain technology field may be quite
likely to be used in the primary metals industry, but there may be little information
in the technology field about whether it is used in the ferrous or non-ferrous metals
subindustry. By considering fairly aggregate industries, we reduce the errors
generated by the concordance.

We calculate two summary statistics that give some feel for the relationship
between technology fields and industries. These calculations are based on the SOU
concept. The patents in a given technology field may all be assigned to one
industry, or they may be assigned to several different industries. We find that it is
most likely for patents to be in a technology field that maps into nine distinct
industries. Thus, it appears that patents in a given technology field will often be
dispersed over many industries. However, we find that 63% of patents are assigned
to the industry that is the most likely industry, given the technology field of the
patent. This statistic suggests that the technology field of the patent contains a lot
of information about its SOU.
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Table 1. Industry definitions

Sector CSIC (1980) SIC (1987)
Manufacturing
1 Food and related products 10, 11 20
2 Textiles and apparel 18-24 22,23
3 Lumber and furniture 25, 26 24, 25
4 DPaper products 27 26
5 Industrial chemicals 371, 373 281, 282, 286
6 Drugs 374 283
7 Other chemicals 372, 375-379 284, 285, 287289
8 Petroleum ref. and extraction 36,7,9 13, 29
9 Rubber products 15, 16 30
10 Stone, clay and glass products 35 32
11 Primary metals 29 33
12 Fabricated metal products 30 34
13 Office and computing machines 336 357
14 Other non-electrical machinery 31 351-356, 358, 359
15 Communication and electronic 335 366, 367
16 Other electrical equipment 331-334, 337-339 361-365, 369
17 Transportation equipment 323-329 371, 373-375, 379
18 Aircraft and missiles 321 372, 376
19 Prof. and scientific instruments 391 38
20 Other manufacturing 12, 17, 28, 392-399 21, 27, 31, 39
Non-manufacturing
21 Agriculture and forestry 1-5 1-9
22 Mining (except oil) 6, 8 10, 12, 14
23 Construction 40-44 15-17
24 Transportation and utilities 45-49 4049
25 Wholesale and retail trade 50-69, 92 50-59
26 TFinance, insurance and real estate 70-76 6067
27 Services and government 77, 81-91, 93-99 70-99

Based on US Bureau of the Census (1991). The following adjustments are made at the three-digit and
four-digit levels to the above groupings: (#, Canadian SICs); (2, 3257); (3, 2714); (4, 1691); (11, 3381,
3922);(14,3081); (19, 1994); (20, 2581); (22, 0921, 0929); (24, 7794, 8631, 996); (26,4491); (27, 0239,
4411, 4522, 6213, 635, 639, 6562).

3.2. Tests of the YIC

We create two subsets of the data (1 and 2) by breaking the sample along the time
dimension or along the residence-of-inventor dimension.” The first subset of the
data is used to estimate the matrix A. This, together with patents by IPC in the
second subset, is used to predict patents by industry in the second subset of the
data. Let A(1) be the matrix of conditional probabilities estimated from subset 1.
Our prediction of patents by industry in subset 2 is

E[Y(2)|x(2)] = A(1)'x(2)

We compare these predictions with Y(2) and with a naive prediction. Qur naive
prediction is obtained by scaling patents by industry in subset 1 to account for
differences in the number of patents in the two subsets, i.e. no/n; [Y(1)], where n,
is the number of patents in subset &, for 2= 1, 2,
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Table 2. Patents from US inventors, by IOM

Actual less predicted

Estimated
Sector Acrtual Naive Concordance SE
Manufacturing
1 Food and kindred products 1294 339.60 141.54 40.940
2 Textiles and apparel 1576 135.59 106.69 48.943
3  Lumber and furniture 1214 —-300.88 —64.57 42.788
4 Paper products 1639 410.24 206.23 48.268
5 Industrial chemicals 11785 —4624.94 - 359.50 110.913
6 Drugs 6 207 180.78 92.67 80.846
7 Other chemicals 8113 467.05 367.29 102.459
8 Petroleum ref. and extraction 481 103.75 —16.36 28.452
9 Rubber products 5198 219.26 112,68 90.419
10 Stone, clay and glass products 1544 — 88.47 43.50 48.081
11 Primary metals 1 508 —148.97 —52.45 49.777
12 Fabricated metal products 7010 —581.08 —161.19 105.772
13 Office and computing machines 5813 2 021.87 384.56 95.661
14  Other non-electrical machinery 23042 —-3066.73 —1096.26 180.286
15 Communication and electronic 13 149 ~116.53 —190.75 134.941
16 Other c¢lectrical equipment 9 883 1225.82 277.50 124.320
17 Transportation equipment 5323 743.07 28.33 88.710
18 Aircraft and missiles 379 51.72 12.74 26.695
19 Prof. and scientific instruments 13 951 3933.75 286.23 148.080
20 Other manufacturing 4693 - 699.24 —44.08 87.368
Non-manufacturing
21 Agriculture and forestry 37 - 47.27 —16.81 9.686
22 Mining (except oil) 18 —15.32 —14.11 8.016
23 Construction 188 - 107.92 -8.14 17.921
24 Transportation and utilities 54 —-4.79 —-17.07 14.158
25 Wholesale and retail trade 30 —4.30 - 1.90 8.055
26 Finance, insurance and real estate 1 —1.00 - 1.00 0.000
27 Services and government 116 —27.06 —47.77 18.994
28 Total - 124 246 0.00 0.00 N/A

‘Actual’ refers to patents as classified by the CIPO. The ‘naive’ prediction is that the fraction of patents
in each industry is the same between patents granted to US inventors and all others. The ‘concordance’
prediction is as described in the paper, with conditional probabilities estimated from patents granted to
non-US inventors. The estimated standard errors (SE) are for the predictions from the concordance.

3.2.1. Patents granted by US inventors. In this test, subset 2 represents patents
granted to US inventors and subset 1 is patents granted to non-US inventors. Each
subset contains about 130 000 patents.

Table 2 shows the results for the IOM. The first column shows the actual
assignment to the IOM of patents granted to US inventors. Note that essentially
all the patents are assigned to one of the 20 manufacturing industries. The second
column shows the difference between the actual industry assignment and the naive
prediction of patents by industry (assuming that US-inventor patents and those
belonging to inventors from elsewhere are assigned to the different industries in the
same proportions). The third column is the difference between the actual industry
assignment and the predictions by industry based on the YTC. For example, the
first row shows that there were 1294 US-inventor patents assigned to the food
industry; the naive procedure underpredicted this number by 370 patents, while
the YTC underpredicted this number by 142 patents (hence, the actual prediction
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Table 3. Patents from US inventors, SOU

Actual less predicted

Estimated
Sector Actual Naive Concordance SE
Manufacturing
1 Food and related products 2748 —399.81 — 145.879 62.142
2 Textiles and apparel 1722 —103.67 20.099 50.767
3 Lumber and furniture 865 — 328.60 —112.877 38.660
4 Paper products 1989 —571.19 - 14.747 53.728
5 Industrial chemicals 8572 —1229.99 —134.342 111.257
6 Drugs 6 608 —3639.53 —~369.479 90.081
7 Other chemicals 4900 —1693.29 —632.862 94.968
8 Petroleum ref. and extraction 5258 2 260.96 930.601 91.380
9 Rubber products 5457 —26.78 203,208 87.312
10 Stone, clay and glass products 1740 —144.63 —21.490 51.915
11 Primary metals 2271 —-1777.56 -~ 329,253 60.445
12 Fabricated metal products 4413 76.43 229.587 83.980
13 Office and computing machines 5943 2 144.75 369.170 99.190
14 Other non-clectrical machinery 11 432 951.55 - 88.520 140.615
15 Communication and electronic 12 096 —40.99 - 43.396 128.601
16 Other electrical equipment 6710 459.81 —257.588 107.113
17 Transportation equipment 7951 1 350.94 269.340 108.214
18 Aircraft and missiles 791 255.57 135.399 37.278
19 Prof. and scientific instruments 4 548 765.22 16.598 91.992
20 Other manufacturing 3020 —25.36 -39.303 70.704
Non-manufacturing
21 Agriculture and forestry 2137 —792.38 —289.374 57.228
22  Mining (except oil) 653 —377.26 -171.889 37.310
23 Construction 5015 —1098.92 —163.723 88.839
24 Transportation and utilities 4588 —269.50 —-125.111 91.335
25 Wholesale and retail trade 2 080 126.75 51.982 61.978
26 Finance, insurance and real estate 119 —9.54 —12.843 17.196
27 Services and government 15928 4137.01 726.693 153.178
28 Total 129 554 0.00 0.000 N/A

‘Actual’ refers to patents as classified by the CIPO. The ‘naive’ prediction is that the fraction of patents
in each industry is the same between patents granted to US inventors and all others. The ‘concordance’
prediction is as described in the paper, with conditional probabilities estimated from patents granted
to non-US inventors. The estimated standard errors (SE) are for the predictions from the
concordance.

from the concordance was 1152). In all the manufacturing industries, with the
exception of communication equipment, the YT'C prediction error is less than the
naive prediction error. The most dramatic improvements are in ‘industrial chemi-
cals’ (5), ‘computing’ (13), ‘other electrical equipment’ (16) and ‘instruments’
(19).

For each manufacturing industry, except ‘food’ (1) and ‘paper’ (4), the
prediction error from using the YTC is less than 10% of the actual number of
patents assigned to the industry. The last column of Table 2 shows the estimated
standard errors of the predictions. In most industries, the absolute value of the
YTC prediction error is less than twice its estimated standard error. None the less,
there is some evidence that the estimated standard errors understate the true
uncertainty attached to the predictions from the YTC.
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Table 4. Patents granted or published after 1989, by IOM

Actual less predicted

Estimated
Sector Actual Naive Concordance SE
Manufacturing
1 Food and related products 1282 —-12.26 - 62.06 42.722
2 Textiles and apparel 1613 —268.01 -599.91 68.967
3 Lumber and furniture 1608 95.84 6.36 56.984
4 Paper products 1754 258.90 —21.39 61.597
5 Industrial chemicals 17 421 2 836.26 77.29 152.315
6 Drugs 8924 4417.71 96.50 158.492
7 Other chemicals 9111 178.49 —662.07 128.262
8 Petroleum ref. and extraction 477 —33.62 —82.40 33.929
9 Rubber products 6416 1345.27 628.92 110.787
10 Stone, clay and glass products 1652 —393.09 —428.45 65.080
11 Primary metals 1596 -508.16 —391.61 62.043
12 Fabricated metal products 7615 —1759.87 —1104.23 125.133
13 Office and computing machines 6 662 2697.83 2904.12 83.827
14 Other non-electrical machinery 26 544 —3834.43 729.17 193.210
15 Communication and electronic 13 000 —4966.10 —3496.15 154.727
16 Other electrical equipment 8 041 ~5974.06 —3001.29 130.245
17 Transportation equipment 6 092 966.14 1500.18 84.269
18 Aircraft and missiles 496 211.16 150.73 24.974
19 Prof. and scientific instruments 15 598 4 340.80 4 059.67 143.702
20 Other manufacturing 5 665 —282.57 —1016.63 112.598
Non-manufacturing
21 Agriculture and forestry 123 -123.00 -123.00 0.000
22 Mining (except oil) 12 -40.51 —28.79 8.787
23 Construction 367 205.55 230.65 17.272
24 Transportation and utilities 114 —114.00 —114.00 0.000
25 Wholesale and retail trade 64 62.69 62.24 2.188
26 Finance, insurance and real estate 1 -1.00 - 1.00 0.000
27 Services and government 243 218.06 211.14 5.710
28 Total 142 491 0.00 0.00 N/A

‘Actual’ refers to patents as classified by the CIPO. The ‘naive’ prediction is that the fraction of patents
in each industry is the same for patents granted before or after the end of 1989. The ‘concordance’
prediction is as described in the paper, with conditional probabilities estimated from patents granted prior
to 1989. The estimated standard errors (SE) are for the predictions from the concordance.

Table 3 presents broadly similar results for SOU. There are now 21 of the 27
industries in which the concordance predictions improve on the naive predictions.
In this application, for both the IOM and the SOU, the YT'C performs quite well.
It does appear, however, that the estimated standard errors must be viewed
sceptically.

3.2.2. Patents granted or published after 1989. In this test, subset 2 is patent
applications published after 1989 and subset 1 is patents granted during 1983-89.
Subset 2 contains more patents, because it includes applications that were pub-
lished but that may never be granted.

Table 4 shows the results for the IOM. Once again, the YT'C generally
outperforms the naive predictions. However, in this case, there are a number
of manufacturing industries—‘textiles’ (2), ‘petroleum’ (8), ‘stone clay glass’ (10),
‘primary metals’ (11), ‘fabricated metals’ (12), ‘computing’ (13), ‘communication
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Table 5. Patents granted or published after 1989, by SOU

Actual less predicted

Estimated
Sector Actual Naive Concordance SE
Manufacturing
1 Foed and related products 3956 1255.48 523.35 85.282
2 Textiles 2026 —62.98 —250.11 65.100
3 Lumber and furniture 1225 71.78 —-153.73 55.543
4 Paper products 3011 866.66 402.04 75.133
5 Industrial chemicals 10 295 —801.00 — 899.47 143.969
6 Drugs 11565 4123.73 1512.80 157.318
7 Other chemicals 6 875 486.79 351.70 114.619
8 Petroleum ref. and extraction 3317 —3328.21 —1295.74 84.071
9 Rubber products 6 836 1175.31 395.63 121.174
10 Stone, clay and glass products 2061 - 85.98 76.69 61.697
11 Primary metals 3222 —1045.59 365.54 66.715
12 Fabricated metal products 4567 —1143.77 —677.82 105.717
13 Office and computing machines 6581 2242.24 2110.91 88.303
14 Other non-electrical machinery 12 470 —454.03 708.23 143.295
15 Communication and electronic 12 546 —3411.99 —2032.45 148.210
16 Other electrical equipment 6477 —2353.41 —505.34 110.896
17 Transportation equipment 8562 366.86 800.73 113.128
18 Aircraft and missiles 883 274.10 150.37 38.639
19 Prof. and scientific instruments 5893 2507.13 2 746.86 81.780
20 Other manufacturing 3509 0.56 —78.46 89.421
Non-manufacturing
21 Agriculture and forestry 2 625 —726.60 — 485.02 72.388
22 Mining (except oil) 635 — 793.68 — 383.87 42.273
23 Construction 6 336 —260.45 —549.01 114.640
24 ‘Transportation and utilities 4743 —1676.84 —934.35 105.671
25 Wholesale and retail trade 2342 23.69 —327.19 84.768
26 Finance, insurance and real estate 135 -19.20 —69.48 23,754
27 Services and government 17 188 2769.40 —1502.81 197.778
28 Total 149 881 0.00 0.00 N/A

‘Actual’ refers to patents as classified by the CIPO. The ‘naive’ prediction is that the fraction of patents
in each industry is the same for patents granted before or after the end of 1989. The ‘concordance’
prediction is as described in the paper, with conditional probabilities estimated from patents granted prior
to 1989. The estimated standard errors (SE) are for the predictions from the concordance.

equipment’ (15), ‘other electrical equipment’ (16), ‘transportation equipment’
(17), ‘aircraft’ (18), ‘instruments’ (19), and (20) ‘other’—in which the concord-
ance errors exceed 10% of the actual patents assigned. The prediction errors
exceed 25% of the actual patents assigned for six of these industries. In most
industries, the estimated standard errors appear to be far too small.

The results for the SOU (Table 5) are much the same. The YTC performs
particularly poorly in ‘petroleum’ (8), ‘computing’ (13), ‘instruments’ (19), ‘min-
ing’ (22) and ‘finance’ (26). In these five industries, the prediction errors exceed
25% of the actual patents assigned.

In trying to predict patents by industry after 1989, the concordance makes
substantial errors.'® It is likely that errors of this magnitude or greater are a fact
of life in wusing the YTC to predict patents by industry in other countries.
Unfortunately, our estimated standard errors may not pin-point the problem
industries. This is because the shifts in the underlying conditional probabilities that
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generate large prediction errors also invalidate our estimated standard errors.
However, it is still the case that the IPC assignments of patents are useful in
predicting their industry assignments. This can be seen in Tables 4 and 5, by the
tendency of the concordance prediction error to be less than the naive prediction
error.

3.2.3. Annual estimates. We now investigate more carefully the time-series proper-
ties of the concordance prediction errors. If the errors in predicting patents by
industry after 1989 arose from persistent shifts in the underlying YTC probability
matrix A, then we should observe the prediction errors within a given industry as
being highly correlated over time. However, if errors are highly persistent, then it
may be that the variation over time of the predicted patents for a given industry
is quite informative about the variation over time in patents actually assigned to the
industry.

To pursue these hypotheses, we compare the actual and predicted patents by
industry for each year during 1989-93. The matrix A is estimated using patents
granted during 1983-88. To avoid having the results affected by the discontinuity
in patenting between 1989 and 1990, we look at shares of patenting by industry.
In other words, both the actual and the predicted patents by industry for a given
year are divided by the total patents in that year.

A series of plots presenting the results are available on request from the
authors. The bottom line is that the errors in the concordance do display
persistence over time. Nevertheless, the concordance predictions often succeed in
picking up the time-series variation in actual patent assignments. This is import-
ant, because it is often the time-series variation—rather than the overall
level—which is of most interest for economic analysis.

4. Conclusions

In this paper, we have presented a formal statistical method for predicting patent
counts by industry. It would be a great help to economic researchers if each
national patent office made these assignments; however, in fact, only the Canadian
patent office does so. We have used the industry and technology assignments of
Canadian patents to develop a method that can be used to predict patent counts
by industry in all countries that group their patents according to the IPC system
(most countries do so).

The method’s out-of-sample prediction errors are evaluated on subsets of the
Canadian data. The results ae encouraging. The prediction error is generally
smaller than would be the case if the predictions were based on constant shares of
patents being assigned to each industry. Furthermore, the prediction error is
generally moderate relative to the number of patents assigned to an industry
(usually less than 10% for patents granted to US inventors and usually less than
25% for patents published after 1989). Even when errors are large, the predictions
from the YTC often reflect the time-series variation in the patents assigned to an
industry, When compared with alternatives, such as manual assignment of each
patent to an industry, the YTC looks quite attractive.

By developing the YTC within a statistical framework, we can estimate
standard errors for our predictions. In theory, these standard errors could be
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incorporated into subsequent studies that use the patents by industry as data. In
practice, it appears that these standard errors have a considerable downward bias.
Our hypothesis is that the instability in the concordance relationships over time
leads us to underestimate the true standard errors."

If the YTC proves to be a useful tool for researchers, then it will be applied
over different time periods to patent data from many different countries. This
paper provides some evidence on the magnitude of the industry assignment errors
that are likely to result. We have shown that shifts in industry assignments
conditional on technology assignments can lead to large prediction errors over time
in some industries. We also provide indirect evidence on how well the concordance
will work when applied in countries other than Canada. As shown in Tables 2 and
3, we predict quite accurately the industry assignments of US-inventor patents,
based on the industry and technology assignments of non-US-inventor patents.
Thus, variation in the source country of patented inventions may pose few
problems for the YTC. Of course, all our evidence is based on the selected sample
of inventions that were worth patenting in Canada. It is possible that the country
in which patent protection is sought matters more for the reliability of the YTC
than does the source country. We await comparisons with industry-level data in
other countries to resolve this issue.

Notes

1. A number of papers have used early versions of the Yale Technelogy Concordance. For example,
Evenson (1991) and Kortum (1993) look at the behavior of the patent: R&D ratio at the industry
level, while Kortum and Lach (1995) estimate the relationship between patenting and productivity
growth in US industries. Earlier efforts to count patents at the industry level include those of
Schmookler (1966) and Scherer (1984).

2. We use the IPC art a level of detail that includes about 6000 distinct technology fields.

3. The industries are defined at the four-digit level of the Canadian Standard Industrial Classification
(CSIC) system. The task of assigning industries is performed by a staff of patent classifiers. These
individuals are trained in the industry classification system, although their main job is to assign
technology codes. The CSIC codes are similar, but not identical, to US SIC codes. For example,
there is no classification for ‘rockets’ under the CSIC. However, it is possible (with the help of the
US Bureau of the Census (1991)) to aggregate the Canadian codes to the level at which
internationally comparable R&D data are collected by the Organization for Economic Cooperation
and Development (OECD). In this paper, we construct aggregates that match industries for which
R&D data are collected in the US.

4. Sece Johnson (this issue) (1995) for a comparison of patents by industry as assigned by the CIPO
and industry-level data from innovation surveys.

5. Since October 1989, Canada has published patent applications 18 months after the date of
application, regardless of whether or not the patents would eventually be granted. The data set
includes all these published applications.

6. The USPC is very detailed, including 100 000 classes (about 50 000 in Schmookler’s time). It is
even more ‘technologically oriented’ (hence, less ‘industry oriented’) than the IPC. This means
that patents are classified by how they accomplish a certain task, rather than by the service they
provide. For example, a heart pump is a ‘pump’ under the USPC, and not a ‘medical device’.

7. The OTAF concordance is described in Marmor et al. (1979). Scherer (1982) points to several
deficiencies in the original concordance. An extensive review and assessment are provided in Patent
and Trademark Office (1985).

8. We assume that a patent is assigned to only one IOM and only one SOU. In reality, the CIPO
assigned up to three IOMs and three SOUs; also, patent offices often assign multiple IPCs to a
single invention. Incorporating this additional information, by identifying ‘principle’ and ‘second-
ary’ assignments, complicates the methodological issues and requires additional assumptions on
the appropriate weights to attach to each assignment. Therefore, we assume that the first
classification is the only one. In the following section, we discuss why this is a reasonable assumption.
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9. See Bishop et al. (1977, p. 63) for a discussion of the sampling scheme that generates the
multinomial distribution.

10. Because the same invention may be patented in several countries, it is likely that € and n are
positively correlated. By assuming independence, we obtain an upper bound on the variance of the
difference between them (u).

11. Tabulations of the data indicate a discontinuity in patenting by the SIC, pre- and post-1982.
Individuals at the CIPO recommended using the post-1982 data, because industry assignment
procedures improved and industry definitions stabilized.

12. For example, group DO5C 009 contains patents on automatic embroidering machines.

13. Some patents, which are of very general use, are not assigned an SOU, and process patents, with
no tangible apparatus, are not assigned an IOM. Canadian patents are assigned to four-digit
industries as defined in the 1980 version of the CSIC. A concordance between the 1980 version
of the CSIC and the 1987 version of the SIC has been developed by the US Census and Statistics
Canada (US Bureau of the Census, 1991). About 4% of patents are assigned to a four-digit SIC
ending in zero, such as 2710. Such industries do not appear in the CSIC system. In these cases,
the industry assignment is only meaningful at the three-digit level.

14. In Kortum and Putnam (1989a), x° tests of the stability of the A matrix were performed. Those
tests always reject the null hypothesis of a stable A matrix, but they are not informative about how
well the YTC will make out-of-sample predictions in practice.

15. In principle, because we condition on patents by technology field, the more detailed the technologi-
cal classification is, the better will be the results. In practice, moving to greater detail entails
considerable computational and data storage burdens. Furthermore, the definitions in the IPC are
more likely to change over time at the subgroup level of the IPC. Keeping track of such changes
as they are adopted in different countries would be extremely difficult.

16. The relationship between the CSIC and the SIC shown in Table 1 was checked against the
concordance produced by the US Census and Statistics Canada (US Bureau of the Census, 1991).

17. The objective was to break the sample along a dimension in which shifts in the concordance
relationships may have occurred. Another approach would be to create two data sets by randomly
sampling from the original data set. This second approach would essentially mimic the theory used
to derive the YTC. In this sense, it would not provide a powerful test of the YTC.

18. A factor that may be contributing to errors over time is changes in the IPC. The IPC system is
supposed to be updated by the World Intellectual Property Organization every 5 years. We have
chosen to ignore these updates, but it may be possible to keep track of the version of the IPC in
applying the concordance.

19. A possible source of instability in the concordance is shifts over time in the industry structure in
Canada. One method of modelling these shifts, but one that requires additional restrictions along
other dimensions, is pursued by Kortum and Putnam (1989b). Unfortunately, in practice, that
method did not turn out to be an improvement over the approach followed here.
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